
©Anthony Steed 2000-2006, Jan Kautz 2007-2012

SCAN CONVERSION

2011 Introduction to Graphics
Lecture 9

Overview

¨  Recap
¤  Inside/Outside a Polygon

¨  Naïve Filling Algorithm
¨  Active Edge Tables

¤ Exploiting coherence

¨  Brute Force Rasterization
¤ Half-Space Test

2D Scan Conversion

¨  Primitives are continuous; screen is discrete
¤ Well, triangles are described by a discrete set of vertices
¤ But they describe a continuous area on screen

2D Scan Conversion

¨  Solution: compute discrete approximation
¨  Scan Conversion (Rasterization):

algorithms for efficient generation of the samples
comprising this approximation

Recap - Inside/Outside

¨  Draw a line from the test point to
the outside
¤ +1 if you cross anti-clockwise
¤  -1 if you cross clockwise

+1

-1

Non-zero

Odd-Even

Naïve Algorithm

¨  Find a point inside the polygon
¨  Do a flood fill:

¤ Keep a stack of points to be tested
¤ When the stack none empty

n Pop the top point (Q)
n Test if Q is inside or outside

n  If Inside, colour Q, push neighbours of Q if not already tested
n  It outside discard

Critique

¨  Horribly slow
¤ But still very common in paint packages!

¨  Stack might be very deep

¨  Need to exploit TWO types of coherency
¤ Point coherency
¤ Scan-line coherency

Point Coherency

¨  Ray shooting is fast, but
note that for every point on
one scan line the
intersection points are the
same

¨  Why not find the actual
span for each line from the
intersection points?

Scan-Line Coherency

¨  Intersection points of polygon edges with scan lines
change little on a line by line basis

b
xx

bxay
bxay

ii

ii

ii

1
1

11

+=

+=

+=

−

−−
yi

yi-1

x i-1

x i

Overview of Active Edge Table

¨  For each scan-line in a polygon only certain edges need
considering

¨  Keep an active edge table (AET)
¤  Initialize the AET with details for first scan-line
¤ Update this edge table based upon the vertical extent of

the edges
¤ From the AET extract the required spans

Setting Up

¨  “fix” edges
¤ make sure y1<y2 for each (x1,y1) (x2,y2)

¨  Form an ET
¤ Bucket sort all edges on minimum y value
¤ 1 bucket might contain several edges
¤ Each edge element contains

n  (max Y, start X, X increment)
n X increment = (x2-x1)/(y2-y1)

Example

0 1 2 3 4 5 6 7 8

8
7
6
5
4
3
2
1

0

a b

cd

Setup

¨  Edges are

¨  Edge Table Contains

Edge Label Coordinates y1 Structure
 a (1,1) to (4,7) 1 (7,1,0.5)
 b (7,2) to (4,7) 2 (7,7,-0.6)
 c (7,2) to (4,4) 2 (4,7,-1.5)
 d (1,1) to (4,4) 1 (4,1,1)

y1 Sequence of Edges
1 (7,1,0.5), (4, 1, 1)
2 (7,7,-0.6), (4, 7,-1.5)

Maintaining the AET

¨  For each scan line
¤ Remove all edges whose y2 is equal to current line
¤ Update the x value for each remaining edge
¤ Add all edges whose y1 is equal to current line

Drawing the AET

¨  Sort the active edges on x intersection
¨  Pairs of edges are the spans we require

¨  Caveats (discussed in the notes)
¤ Don’t consider horizontal lines
¤ Maximum vertices are not drawn
¤ Plenty of special cases when polygons share edges

Example

0 1 2 3 4 5 6 7 8

8
7
6
5
4
3
2
1

0

a b

cd

On Each Line

Line Active Edge Table Spans
0 empty
1 (7,1,0.5), (4,1,1) 1 to 1
2 (7,1.5,0.5), (4,2,1), (4,7,-1.5), (7,7,-0.6) 1.5 to 2, 7 to 7
3 (7,2.0,0.5), (4,3,1), (4,5.5,-1.5), (7,6.4,-0.6) 2.0 to 3, 5.5 to 6.4
4 (7,2.5,0.5), (7,5.8,-0.6) 2.5 to 5.8
5 (7,3.0,0.5), (7,5.2,-0.6) 3.0 to 5.2
6 (7,3.5,0.5), (7,4.6,-0.6) 3.5 to 4.6
7 empty
8 empty

Is this really done in practise?

¨  Modern rasterisation works quite differently
¨  Reason:

¤ GPU implementation of AET is very tricky
¤ Triangles are a special case

n Do not need generality of AET

¨  Start with a brute-force method and improve it…

Brute Force Solution for Triangles

¨  For each pixel
¤ Compute line equations (half-space test) at pixel center
¤ “clip” against the triangle

Half-Space Test

¨  For each edge compute line equation:

¨  If Li(x,y) > 0
¤ point in positive half-space

¨  If Li(x,y) < 0
¤  point in negative half-space

¨  If all L1,2,3(x,y) >= 0
¤ Point (x,y) is inside triangle!

iiii cybxayxL ++=),(

Brute Force Solution for Triangles

¨  For each pixel
¤ Compute line equations at pixel center
¤ “clip” against the triangle

Problem?

Brute Force Solution for Triangles

¨  For each pixel
¤ Compute line equations at pixel center
¤ “clip” against the triangle

Problem?
If the triangle is small,

a lot of useless
computation

Brute Force Solution for Triangles

¨  Improvement: Compute only for the screen bounding box
of the triangle

¨  How do we get such a bounding box?
¤ Xmin, Xmax, Ymin, Ymax of the triangle vertices

Rasterisation on Graphics Cards

¨  Triangles are usually very small
¤ Setup cost are becoming more troublesome

¨  Clipping is annoying
¨  Brute force is tractable

Rasterisation on Graphics Cards

For every triangle
ComputeProjection

Compute bbox, clip bbox to screen limits

For all pixels in bbox
Compute line equations

If all line equations>0 //pixel [x,y] in triangle

 Framebuffer[x,y]=triangleColor

Summary

¨  We have developed the Active Edge Table algorithm
¤ Exploits coherency in two directions

¨  AET has many applications

¨  AET is an important algorithm in 2D and 3D graphics

¨  Brute force is viable alternative

